Search results

Search for "transport mechanism" in Full Text gives 28 result(s) in Beilstein Journal of Nanotechnology.

Development and characterization of potential larvicidal nanoemulsions against Aedes aegypti

  • Jonatas L. Duarte,
  • Leonardo Delello Di Filippo,
  • Anna Eliza Maciel de Faria Mota Oliveira,
  • Rafael Miguel Sábio,
  • Gabriel Davi Marena,
  • Tais Maria Bauab,
  • Cristiane Duque,
  • Vincent Corbel and
  • Marlus Chorilli

Beilstein J. Nanotechnol. 2024, 15, 104–114, doi:10.3762/bjnano.15.10

Graphical Abstract
  • a transport exponent value (n) of 0.3, indicating a release mechanism primarily driven by Fickian diffusion [44]. The free terpenes exhibited a value of 0.6, suggesting an anomalous transport mechanism for drug release. This mechanism involves a combination of diffusion and dissolution processes for
PDF
Album
Supp Info
Full Research Paper
Published 18 Jan 2024

Overview of mechanism and consequences of endothelial leakiness caused by metal and polymeric nanoparticles

  • Magdalena Lasak and
  • Karol Ciepluch

Beilstein J. Nanotechnol. 2023, 14, 329–338, doi:10.3762/bjnano.14.28

Graphical Abstract
  • channels. The discovery of N-TECs creates new therapeutic possibilities, which requires more in-depth knowledge of these cells, their morphology and physiology, and the receptors involved in this transport mechanism [30]. Nevertheless, some limitations resulting from transcellular transport should be
  • halted cellular activity using perfusion with a fixative, which allowed researchers to separate the passive and active transport mechanisms [31]. Nevertheless, research currently confirms the existence of a completely different active transport mechanism of NPs across the endothelium that is unrelated to
  • the possibility of side effects and pathology of using them. The main functions of endothelial cells. Two main routes to transport NPs across the endothelium, namely the transcellular route and the paracellular route. NanoEL: active transport mechanism of NPs across the endothelium that is unrelated
PDF
Album
Review
Published 08 Mar 2023

Straight roads into nowhere – obvious and not-so-obvious biological models for ferrophobic surfaces

  • Wilfried Konrad,
  • Christoph Neinhuis and
  • Anita Roth-Nebelsick

Beilstein J. Nanotechnol. 2022, 13, 1345–1360, doi:10.3762/bjnano.13.111

Graphical Abstract
  • network flow of water molecules is formed whose upper end is fastened within the leaves where transpiration takes place at the living leaf cells. From there it “hangs down” through twigs, trunks, stem and roots into the ground water. The stability of this transport mechanism relies on the comparatively
PDF
Album
Perspective
Published 17 Nov 2022

Impact of device design on the electronic and optoelectronic properties of integrated Ru-terpyridine complexes

  • Max Mennicken,
  • Sophia Katharina Peter,
  • Corinna Kaulen,
  • Ulrich Simon and
  • Silvia Karthäuser

Beilstein J. Nanotechnol. 2022, 13, 219–229, doi:10.3762/bjnano.13.16

Graphical Abstract
  • distance between two AuNPs, while in longer wires thermally activated hopping is the dominant transport mechanism. This finding is in notable agreement with reports from other groups [31][32][36]. Thus, the respective device design of Ru(TP)2-based devices with roughly comparable dimensions in the
  • performance is sensibly determined by the molecule functionality and depends strongly upon the chosen device design, which can be used to define the transport mechanism. The use of long Ru(TP)2-complex wires bridging 8 to 20 nm gaps between nanoelectrodes results in hopping conduction with a low transport
  • of gold nanoparticles and contacted by nanoelectrodes. The resulting small-area nanodevices were thoroughly electrically characterized as a function of temperature and light exposure. Differences in the resulting device conductance could be attributed to the device design and the respective transport
PDF
Album
Supp Info
Full Research Paper
Published 15 Feb 2022

Electrical, electrochemical and structural studies of a chlorine-derived ionic liquid-based polymer gel electrolyte

  • Ashish Gupta,
  • Amrita Jain,
  • Manju Kumari and
  • Santosh K. Tripathi

Beilstein J. Nanotechnol. 2021, 12, 1252–1261, doi:10.3762/bjnano.12.92

Graphical Abstract
  • tabulated in Table 2. Dielectric studies are some of the most important techniques to understand the effect of plasticizers, blending of polymers, inter-/intramolecular interactions, their transport mechanism, and relaxation behavior at a molecular level. Figure 6a and Figure 6b show the dielectric constant
PDF
Album
Full Research Paper
Published 18 Nov 2021

A biomimetic nanofluidic diode based on surface-modified polymeric carbon nitride nanotubes

  • Kai Xiao,
  • Baris Kumru,
  • Lu Chen,
  • Lei Jiang,
  • Bernhard V. K. J. Schmidt and
  • Markus Antonietti

Beilstein J. Nanotechnol. 2019, 10, 1316–1323, doi:10.3762/bjnano.10.130

Graphical Abstract
  • alert its other leaves to begin anticipatory defense responses by Ca2+ ion transport [4]. A very significant ion-transport mechanism based on Na+ and K+ across cell membranes results in the generation of the action potential, which plays a crucial role in the sensory system of intelligent life [5]. In
PDF
Album
Supp Info
Full Research Paper
Published 27 Jun 2019

The role of the Ge mole fraction in improving the performance of a nanoscale junctionless tunneling FET: concept and scaling capability

  • Hichem Ferhati,
  • Fayçal Djeffal and
  • Toufik Bentrcia

Beilstein J. Nanotechnol. 2018, 9, 1856–1862, doi:10.3762/bjnano.9.177

Graphical Abstract
  • outperforms considerably the conventional counterparts, with 58% improvement regarding the subthreshold swing factor and 54% enhancement in terms of the ION/IOFF ratio. The optimized design improves the device tunneling performance, not only through a more effective carrier-transport mechanism, but also
PDF
Album
Full Research Paper
Published 22 Jun 2018

Review: Electrostatically actuated nanobeam-based nanoelectromechanical switches – materials solutions and operational conditions

  • Liga Jasulaneca,
  • Jelena Kosmaca,
  • Raimonds Meija,
  • Jana Andzane and
  • Donats Erts

Beilstein J. Nanotechnol. 2018, 9, 271–300, doi:10.3762/bjnano.9.29

Graphical Abstract
  • well as on the band structure of contacting materials [86], and can be modulated by an applied source–drain bias in the on state of a NEM switch. For example, the change in the transport mechanism from direct tunnelling at low drain bias to FN tunnelling at the higher drain bias was shown for a Pd–MoS2
PDF
Album
Review
Published 25 Jan 2018

The role of ligands in coinage-metal nanoparticles for electronics

  • Ioannis Kanelidis and
  • Tobias Kraus

Beilstein J. Nanotechnol. 2017, 8, 2625–2639, doi:10.3762/bjnano.8.263

Graphical Abstract
  • ) to 750 S/cm as illustrated in Figure 5. The temperature profiles of the studied films all showed linear changes in conductivity that indicate a classical Arrhenius-type activated charge-carrier transport mechanism [114]. 3.2 Linking Functional ligands that cross-link particles after their deposition
PDF
Album
Review
Published 07 Dec 2017

(Metallo)porphyrins for potential materials science applications

  • Lars Smykalla,
  • Carola Mende,
  • Michael Fronk,
  • Pablo F. Siles,
  • Michael Hietschold,
  • Georgeta Salvan,
  • Dietrich R. T. Zahn,
  • Oliver G. Schmidt,
  • Tobias Rüffer and
  • Heinrich Lang

Beilstein J. Nanotechnol. 2017, 8, 1786–1800, doi:10.3762/bjnano.8.180

Graphical Abstract
  • implementation of ferromagnetic substrates would enable interesting physical phenomena such as spintronic capabilities. On the other hand, the possibility of choosing different thicknesses of CuTPP(OMe)4 allows for a quantitative investigation of the transport properties in order to identify dominant transport
  • mechanism of the organic material. A shadow mask during deposition was employed to avoid additional photolithography processing. This shadow mask also allows for the formation of thin molecular dendrites and even single dendrites on the Ni surface (Figure 2). The growth conditions of the dendrites were
PDF
Album
Review
Published 29 Aug 2017

Process-specific mechanisms of vertically oriented graphene growth in plasmas

  • Subrata Ghosh,
  • Shyamal R. Polaki,
  • Niranjan Kumar,
  • Sankarakumar Amirthapandian,
  • Mohamed Kamruddin and
  • Kostya (Ken) Ostrikov

Beilstein J. Nanotechnol. 2017, 8, 1658–1670, doi:10.3762/bjnano.8.166

Graphical Abstract
  • dissociates under plasma and forms reactive radicals/ions. Transport mechanism of these plasma species and growth kinetics of carbon nanomaterials in PECVD has been extensively explained by Munoz and co-workers [26]. The density and energy of these plasma species depend on the plasma power, position of the
PDF
Album
Full Research Paper
Published 10 Aug 2017

Synthesis, spectroscopic characterization and thermogravimetric analysis of two series of substituted (metallo)tetraphenylporphyrins

  • Rasha K. Al-Shewiki,
  • Carola Mende,
  • Roy Buschbeck,
  • Pablo F. Siles,
  • Oliver G. Schmidt,
  • Tobias Rüffer and
  • Heinrich Lang

Beilstein J. Nanotechnol. 2017, 8, 1191–1204, doi:10.3762/bjnano.8.121

Graphical Abstract
  • by a knowledge-based approach. Along with a preliminary work of us, we noticed that “[…]the electrical analysis and the understanding of the underlying transport mechanism become important for future implementation of porphyrin-based (spintronic) devices.[…]” [8]. It was thus desired to have access
PDF
Album
Supp Info
Full Research Paper
Published 02 Jun 2017

Nanoantenna-assisted plasmonic enhancement of IR absorption of vibrational modes of organic molecules

  • Alexander G. Milekhin,
  • Olga Cherkasova,
  • Sergei A. Kuznetsov,
  • Ilya A. Milekhin,
  • Ekatherina E. Rodyakina,
  • Alexander V. Latyshev,
  • Sreetama Banerjee,
  • Georgeta Salvan and
  • Dietrich R. T. Zahn

Beilstein J. Nanotechnol. 2017, 8, 975–981, doi:10.3762/bjnano.8.99

Graphical Abstract
  • phthalocyanines. These molecules also offer the possibility of changing the spin-dependent transport mechanism by slightly modifying the molecular structure [6]. It has been previously shown that the molecular structure of a magnetic material can be probed by various spectroscopic techniques [11]. Under
PDF
Album
Full Research Paper
Published 03 May 2017

Graphene–polymer coating for the realization of strain sensors

  • Carmela Bonavolontà,
  • Carla Aramo,
  • Massimo Valentino,
  • Giampiero Pepe,
  • Sergio De Nicola,
  • Gianfranco Carotenuto,
  • Angela Longo,
  • Mariano Palomba,
  • Simone Boccardi and
  • Carosena Meola

Beilstein J. Nanotechnol. 2017, 8, 21–27, doi:10.3762/bjnano.8.3

Graphical Abstract
  • transport mechanism should be taken into account, yielding a dependence of the conductivity on the configuration of overlap area and contact resistance of the platelets. The graphene-based layer can be considered as a granular system consisting of metal grains embedded in an insulating matrix and its
  • factor on the order of 50. The electrical features are consistent with an intergrain electrical transport mechanism among graphene platelets undergoing strain solicitations. The tensile strain of the PMMA/graphene structure during the bending test was confirmed by IRT and μ-RS measurements. The strain
PDF
Album
Full Research Paper
Published 03 Jan 2017

Obtaining and doping of InAs-QD/GaAs(001) nanostructures by ion beam sputtering

  • Sergei N. Chebotarev,
  • Alexander S. Pashchenko,
  • Leonid S. Lunin,
  • Elena N. Zhivotova,
  • Georgy A. Erimeev and
  • Marina L. Lunina

Beilstein J. Nanotechnol. 2017, 8, 12–20, doi:10.3762/bjnano.8.2

Graphical Abstract
  • 0.5 V, the second region ranges from 0.5 to 2 V. In our opinion the main transport mechanism in region 1 is thermionic emission. In this way charges jump from quantum dot energy levels to the conduction band of the barrier layers. In region 1 the I–V curves of all samples have saturation regions near
  • the barrier layer to 1018 cm−3 reduces the voltage at which the change of the transport mechanism can been observed to 0.47 V. Conclusion The results of the experimental studies of crystallization of InAs-QD/GaAs(001) quantum-dot nanoheterostructures obtained by ion beam sputtering are presented and
PDF
Album
Full Research Paper
Published 03 Jan 2017

Nanostructured SnO2–ZnO composite gas sensors for selective detection of carbon monoxide

  • Paul Chesler,
  • Cristian Hornoiu,
  • Susana Mihaiu,
  • Cristina Vladut,
  • Jose Maria Calderon Moreno,
  • Mihai Anastasescu,
  • Carmen Moldovan,
  • Bogdan Firtat,
  • Costin Brasoveanu,
  • George Muscalu,
  • Ion Stan and
  • Mariuca Gartner

Beilstein J. Nanotechnol. 2016, 7, 2045–2056, doi:10.3762/bjnano.7.195

Graphical Abstract
  • interconnected, and the charge transport mechanism through the oxide film remains unaffected. The films are highly transparent, noticeable as the gold interdigital electrodes are visible through the film. The film grains for the composite samples S2, S3 and S4 were identified with dimensions in the sub-μm range
PDF
Album
Full Research Paper
Published 22 Dec 2016

Nanostructured germanium deposited on heated substrates with enhanced photoelectric properties

  • Ionel Stavarache,
  • Valentin Adrian Maraloiu,
  • Petronela Prepelita and
  • Gheorghe Iordache

Beilstein J. Nanotechnol. 2016, 7, 1492–1500, doi:10.3762/bjnano.7.142

Graphical Abstract
  • devices individually or with other materials, hence the possibility of fabricating various heterojunctions on Si, glass or flexible substrates for future development of Si-based integrated optoelectronics. Keywords: germanium nanoparticle; photocurrent; photodetectors; response time; transport mechanism
  • co-workers [35]. This approach is reported also in the research led by W. Little et al. which assigns the light emission in Ge-nps to the presence of oxygen-terminated nanoparticles [36]. In Figure 5, the transport mechanism that takes place in this kind of structures is described schematically. In
  • resistance. A rather similar transport mechanism was suggested as a result of the analysis conducted by B. C. Hsu and co-workers [38]. When the photodetector test structure is illuminated with integral light at reverse bias, a significant increase of the current density by a factor of about 103 is observed
PDF
Album
Full Research Paper
Published 21 Oct 2016

Effects of electronic coupling and electrostatic potential on charge transport in carbon-based molecular electronic junctions

  • Richard L. McCreery

Beilstein J. Nanotechnol. 2016, 7, 32–46, doi:10.3762/bjnano.7.4

Graphical Abstract
  • transport mechanism, the similarity between Figure 7B and various experimental β plots should be considered qualitative. Although the model structure is significantly simplified compared to the real carbon/oligomer/carbon MJ, tH−2/H−3 determined for G9–molecule–G9 structures is at least a guide toward
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2016

Conductance through single biphenyl molecules: symmetric and asymmetric coupling to electrodes

  • Karthiga Kanthasamy and
  • Herbert Pfnür

Beilstein J. Nanotechnol. 2015, 6, 1690–1697, doi:10.3762/bjnano.6.171

Graphical Abstract
  • , diodes and logic switches [1]. Two decades after the proposal from Aviram and Ratner describing the molecular junction as p-n diodes [2] the experimental research in the field of molecular electronics [3] emerged. Even today, our understanding of the fundamental properties and charge transport mechanism
PDF
Album
Supp Info
Full Research Paper
Published 04 Aug 2015

Current–voltage characteristics of manganite–titanite perovskite junctions

  • Benedikt Ifland,
  • Patrick Peretzki,
  • Birte Kressdorf,
  • Philipp Saring,
  • Andreas Kelling,
  • Michael Seibt and
  • Christian Jooss

Beilstein J. Nanotechnol. 2015, 6, 1467–1484, doi:10.3762/bjnano.6.152

Graphical Abstract
  • ] is confirmed in the dark and under illumination, exemplifying the self-consistency of the Shockley-based analysis. Furthermore, the temperature dependence of the characteristic parameters of the equivalent circuit provides insight into the transport mechanism in the junction and across the interface
  • semiconductor 1 and 2, named Vbi,1 and Vbi,2 A model for the electronic structure of the interface has been developed by Anderson et al., assuming a sharp junction with band discontinuities [30]. For the derivation of the J–V curve, it is assumed that the transport mechanism is governed by injection over the
  • dependence of these parameters gives additional information about the electronic structure of the p–n interface and the transport mechanism across the interface. In inorganic junctions, the temperature dependence of the open circuit voltage is given by for JS << JSC. For a heterojunction, the low temperature
PDF
Album
Full Research Paper
Published 07 Jul 2015

Multiscale modeling of lithium ion batteries: thermal aspects

  • Arnulf Latz and
  • Jochen Zausch

Beilstein J. Nanotechnol. 2015, 6, 987–1007, doi:10.3762/bjnano.6.102

Graphical Abstract
  • conditions, mass convection can be excluded as transport mechanism, but will always be a possibility in a systematic theory. Especially, if there are side reactions leading to film growth or convective gas transport after electrolyte degradation, convective transport might be initiated as a consequence. In
PDF
Album
Full Research Paper
Published 20 Apr 2015

Electrical contacts to individual SWCNTs: A review

  • Wei Liu,
  • Christofer Hierold and
  • Miroslav Haluska

Beilstein J. Nanotechnol. 2014, 5, 2202–2215, doi:10.3762/bjnano.5.229

Graphical Abstract
  • process and their effect on the device with respect to resistance are summarized. Finally, the challenges in obtaining high-performance CNFETs are discussed, covering the reproducibility, long term stability of electrical contact properties, and large-scale fabrication options. Carrier transport mechanism
PDF
Album
Review
Published 21 Nov 2014

Optical properties and electrical transport of thin films of terbium(III) bis(phthalocyanine) on cobalt

  • Peter Robaschik,
  • Pablo F. Siles,
  • Daniel Bülz,
  • Peter Richter,
  • Manuel Monecke,
  • Michael Fronk,
  • Svetlana Klyatskaya,
  • Daniel Grimm,
  • Oliver G. Schmidt,
  • Mario Ruben,
  • Dietrich R. T. Zahn and
  • Georgeta Salvan

Beilstein J. Nanotechnol. 2014, 5, 2070–2078, doi:10.3762/bjnano.5.215

Graphical Abstract
  • characteristics for all TbPc2 film thicknesses investigated. This suggests a uniform distribution of the electrical charge flow through the organic film. To further investigate the transport mechanism in TbPc2 thin films, a series of local I–V spectroscopy measurements on different locations along the organic
  • the same location indicated in (b) for the case of an applied voltage of 0.6 V (c), 1.0 V (d) and 1.5 V (e). Transport mechanism for TbPc2 thin films. Red and blue solid lines indicate the average of 20 local I–V spectroscopy cycles. (a) Current–voltage characteristics for TbPc2 thin films. Grey and
PDF
Album
Supp Info
Full Research Paper
Published 11 Nov 2014

Quantum size effects in TiO2 thin films grown by atomic layer deposition

  • Massimo Tallarida,
  • Chittaranjan Das and
  • Dieter Schmeisser

Beilstein J. Nanotechnol. 2014, 5, 77–82, doi:10.3762/bjnano.5.7

Graphical Abstract
  • of orbital overlap, in TM oxides is a particularly important property for understanding the efficiency of photo-electrodes, as it influences the charge carrier transport mechanism. Covalent materials are desirable because separation and transport of electrons and holes are supported, while the
PDF
Album
Full Research Paper
Published 22 Jan 2014

Large-scale atomistic and quantum-mechanical simulations of a Nafion membrane: Morphology, proton solvation and charge transport

  • Pavel V. Komarov,
  • Pavel G. Khalatur and
  • Alexei R. Khokhlov

Beilstein J. Nanotechnol. 2013, 4, 567–587, doi:10.3762/bjnano.4.65

Graphical Abstract
  • the proton solvation is usually limited by the Zundel cation and the Eigen cation. The difference between potential energy of these cations is very small (ca. 2–3 kcal/mol); as a result, these two solvation forms can interconvert on the femto- to picosecond time scale [97]. While the proton transport
  • mechanism is believed to involve the inter-conversion between these cations [97], the details of the solvation process and aqueous proton transfer are still unknown for ionomer membranes. In order to identify water–proton complexes H+(H2O)n with n = 1–4, the hydronium oxygens were first selected as those
PDF
Album
Full Research Paper
Published 26 Sep 2013
Other Beilstein-Institut Open Science Activities